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Continuous cell lines (CCLs) engage in ‘wasteful’ glucose and

glutamine metabolism that leads to accumulation of inhibitory

byproducts, primarily lactate and ammonium. Advances in

techniques for mapping intracellular carbon fluxes and profiling

global changes in enzyme expression have led to a deeper

understanding of the molecular drivers underlying these

metabolic alterations. However, recent studies have revealed

that CCLs are not necessarily entrenched in a glycolytic or

glutaminolytic phenotype, but instead can shift their

metabolism toward increased oxidative metabolism as

nutrients become depleted and/or growth rate slows. Progress

to understand dynamic flux regulation in CCLs has enabled the

development of novel strategies to force cultures into desirable

metabolic phenotypes, by combining fed-batch feeding

strategies with direct metabolic engineering of host cells.
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Introduction
Continuous cell lines (CCLs) require constant availability

of carbon, nitrogen, energy (ATP), and reductant

(NADPH) to sustain their anabolic functions. Most CCLs,

such as those used in industrial bioprocesses, rely heavily

upon aerobic glycolysis to supply the energetic demands of

cell growth, which involves rapid conversion of glucose to

lactate even in the presence of abundant oxygen [1]

(Figure 1a). However, glycolysis provides only 2 moles

of ATP per mole of glucose consumed, whereas mitochon-

drial oxidative phosphorylation (OXPHOS) can provide up

to 36 moles of ATP from the same amount of glucose. As a

result, aerobic glycolysis is considered ‘wasteful’ from a

bioenergetic and biosynthetic standpoint because it does

not make efficient use of glucose to supply either ATP or

carbon to the cell [2]. Increased consumption of glutamine

is also exhibited by many CCLs, but the nitrogen provided
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by this substrate is also ‘wasted’ due to elevated production

of ammonium and alanine [3]. These observations imply

that the metabolic phenotypes of CCLs are not pro-

grammed to economize their use of carbon, nitrogen, or

energetic resources, but instead tend to increase their

nutrient uptake beyond what is required for growth [4].

This leads to accumulation of excreted byproducts, prim-

arily lactate and ammonium, which reduce cell viability

and recombinant protein yields and introduce unwanted

variability into cell culture bioprocesses [2].

Minimizing wasteful byproduct accumulation has been a

goal of the mammalian biotechnology industry for over 25

years, but it still remains a poorly understood and often ill-

controlled problem [5�]. Furthermore, many production

cultures can exhibit dramatic shifts in metabolic pheno-

type during the course of a typical bioprocess run, yet the

molecular mechanisms responsible for dynamic nutrient

sensing and metabolic response to changing environmen-

tal conditions are only now beginning to emerge [6��].
This review aims to present recent progress in under-

standing the causes and consequences of metabolic repro-

gramming in mammalian cell cultures, as well as

engineering strategies that have been applied to suppress

undesirable metabolic phenotypes in industrial biopro-

cesses. Much of this progress has been enabled by

advances in techniques for mapping intracellular carbon

fluxes using isotope tracing and metabolic flux analysis

(MFA), combined with approaches for profiling global

changes in expression and posttranslational modification

(PTM) of metabolic enzymes and regulatory proteins.

Metabolic physiology of mammalian cell
cultures
Why do CCLs rely on aerobic glycolysis for proliferation?

Although hypotheses abound as to the adaptive

advantage provided by aerobic glycolysis, little consensus

has been achieved in the 85 years since this paradoxical

metabolic shift was first reported by the German bio-

chemist Otto Warburg through his studies of rat tumor

tissues [7]. It is important to note that this effect is not

restricted to mammalian cells, but is in fact analogous to

the well-known Crabtree effect whereby yeast shift to

aerobic ethanol production during rapid growth on glu-

cose [8] or in response to cell-cycle dysregulation [9]. One

explanation for this metabolic flux rewiring is that, while

quiescent cells utilize mitochondria chiefly as a catabolic

engine to produce ATP, proliferating cells must repur-

pose their mitochondria to supply biosynthetic intermedi-

ates: citrate is exported to supply carbon for lipid

biosynthesis, oxaloacetate and alpha-ketoglutarate may

be withdrawn for amino acid or nucleotide biosynthesis,
www.sciencedirect.com
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Typical metabolic phenotypes of proliferating and non-proliferating CCLs. (a) Exponentially growing cultures exhibit aerobic glycolysis and rely on

elevated glutamine consumption to fuel mitochondrial metabolism. This results in increased lactate and ammonium production as cells rewire their

metabolism to maintain carbon, nitrogen, and redox balance. (b) Stationary phase cultures metabolize glucose mainly by oxidation in the TCA cycle,

which provides much higher ATP yields and reduced byproduct accumulation. An increased proportion of incoming glucose is diverted into the

oxidative pentose phosphate pathway to maintain NADPH levels.
and flux rerouting via malic enzyme (ME) and isocitrate

dehydrogenase (IDH) reactions can be used to supply

anabolic reducing power in the form of NADPH [10]

(Figure 2). Indeed, 13C MFA studies have recently shown

that flux leaving the TCA cycle as citrate can at times

exceed the flux entering it from pyruvate, with the

additional citrate supplied by reductive carboxylation

of glutamine via IDH operating in the retrograde direc-

tion [11,12�] (Figure 3b). With their mitochondria redir-

ected toward anabolic processes that utilize glutamine as

a major carbon substrate, proliferating cultures shift

toward aerobic glycolysis to satisfy their cellular demands

for ATP production.

Metabolic flux rewiring is associated with altered

expression and activity of metabolic enzymes

Although the shift to aerobic glycolysis has been a scien-

tific paradox—and a stumbling block of the mammalian

biotech industry — for some time, the underlying mol-

ecular alterations associated with metabolic flux rewiring

in CCLs have been largely undefined. However, recent

studies have identified transcriptional and proteomic

signatures associated with increased aerobic glycolysis

that are conserved across several different cell and tissue

types [13]. Overexpression of the high-affinity glucose

transporter GLUT1 and the initial glycolytic enzyme

hexokinase 2 (HK2) is frequently observed in cancer cells

and transformed cell lines [14,15] (Figure 2). Studies in

hybridoma, Chinese hamster ovary (CHO), and baby

hamster kidney (BHK) cells found that hexokinase

activity was consistently lowest among all glycolytic

enzymes examined, suggesting that it may be the
www.sciencedirect.com 
rate-limiting enzyme of glycolysis in many industrial cell

lines [16,17].

Expression of both GLUT1 and HK2 is controlled by the

transcription factors HIF1 and c-Myc [18] and the sig-

naling protein Akt [19], which are often dysregulated in

immortalized cells. These same proteins also control

expression of several other key glycolytic enzymes that

are commonly upregulated in proliferating CCLs

(Figure 2): phosphofructokinase 1 (PFK1), the bifunc-

tional enzyme phosphofructokinase 2/fructose-2,6-

bisphosphatase (PFK2/FBPase), lactate dehydrogenase

A (LDHA), and the M2 isoform of pyruvate kinase

(PK) [13]. The connection between increased expression

of glycolytic enzymes and cell immortalization is further

strengthened by the finding that either spontaneously

immortalized mouse embryonic fibroblasts (MEFs) or

oncogene-induced human fibroblasts increase their gly-

colytic rate, and inhibition of any one of many different

glycolytic enzymes can induce MEF senescence [20,21].

Upregulation of glycolysis in CCLs is typically accom-

panied by downregulation of enzymes that facilitate

mitochondrial translocation and oxidation of glucose-

derived pyruvate. For example, Neermann and Wagner

[16] measured no detectable level of pyruvate dehydro-

genase (PDH) or pyruvate carboxylase (PC) activity in a

wide range of CCL cultures, and similarly Fitzpatrick

et al. [17] reported no detectable PDH activity in an

antibody-secreting murine hybridoma cell line

(Figure 2). In contrast, activities of both PDH and PC

were detectable in insect cell lines and primary liver cells

[16]. Low activity of PDH in CCLs may be attributable to
Current Opinion in Biotechnology 2013, 24:1108–1115
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Figure 2
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Major pathways of central carbon metabolism and key regulatory proteins that control enzyme expression and activation. The enzymes PFK1 and

PFK2/FBPase (discussed in the text) have been lumped under Glycolysis and are not shown explicitly. See list of abbreviations for explanation of

nomenclature.
phosphorylation of its E1a subunit by one of four differ-

ent pyruvate dehydrogenase kinase (PDK) isoforms, of

which PDK1 is known to be a direct transcriptional target

of HIF1 [22]. With entry of pyruvate into mitochondria

inhibited, CCLs rely on alternative carbon sources —

primarily glutamine and, to a lesser extent, asparagine and

branched-chain amino acids (BCAAs) — to maintain

mitochondrial biosynthetic and bioenergetic functions.

Interestingly, recent work has shown that glutamine

metabolism is under direct control of c-Myc, providing

a molecular explanation for increased glutamine con-

sumption in Myc-overexpressing cells [23,24].

MFA studies provide a global picture of metabolic flux

rewiring

Intracellular pathway fluxes are the functional end points

of metabolism and can be precisely assessed using isotope
Current Opinion in Biotechnology 2013, 24:1108–1115 
tracing and comprehensive MFA experiments [25,26�].
Studies of hybridoma [17,27,28], CHO [29��,30��], BHK

[16], and human [3,31,32�,33] cell lines confirm that

>75% of glucose carbon is typically converted to lactate

during exponential phase growth, with <10% diverted

into the pentose phosphate pathway to supply nucleotide

precursors and <10% oxidized to CO2 in the TCA cycle

(Figure 1a). Glutamine uptake ranged from 10 to 50% of

glucose uptake during these studies and was largely

metabolized through entry into the TCA cycle via con-

version to alpha-ketoglutarate. Glutamine carbon enter-

ing the TCA cycle has three possible fates (Figure 3):

firstly, conversion to lipids or other macromolecule pre-

cursors; secondly, glutaminolysis to form lactate via a

truncated TCA cycle; or thirdly, complete oxidation to

CO2. Due in large part to these glutamine-fueled modes

of TCA cycle operation, it has been estimated that
www.sciencedirect.com
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Figure 3
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Alternative fates of glutamine carbon entering the TCA cycle. Glutamine carbon can be converted to lipids or other macromolecular building blocks

through either (a) normal anaplerosis (in the oxidative direction) or (b) reductive carboxylation. On the other hand, glutamine can be used to supply ATP

and/or NADPH without retention of carbon by either (c) glutaminolysis to form lactate + CO2 or (d) complete oxidation to CO2.
mitochondrial OXPHOS still contributes �50% of cellu-

lar ATP production in proliferating CCLs, despite

marked upregulation of glycolysis [17,34,35]. In fact,

Le et al. [36] have recently shown that a human B-cell

line can grow in total absence of glucose by relying on

complete oxidation of glutamine to generate ATP.

Although controlling cell metabolism during exponential

phase is important for maximizing viable cell density
www.sciencedirect.com 
(VCD), specific productivity of recombinant proteins

typically does not peak until after the culture has transi-

tioned into stationary phase. For this reason, many indus-

trial bioprocesses involve first growing cells to high

density followed by a second phase where growth is

slowed but protein production is maintained [37]. As

cultures shift to stationary phase, they undergo a dramatic

departure from the canonical aerobic glycolysis pheno-

type observed during exponential phase. This involves
Current Opinion in Biotechnology 2013, 24:1108–1115



1112 Pharmaceutical biotechnology
firstly, reduction of specific glucose and glutamine uptake

rates while maintaining a similar or elevated TCA cycle

flux; secondly, upregulation of oxidative pentose phos-

phate pathway (oxPPP) flux; thirdly, near complete chan-

neling of glucose-derived pyruvate into mitochondria;

and fourthly, in some instances, a full reversal of lactate

flux from production to consumption [29��,30��,38,39]

(Figure 1b). As a whole, these observations imply that

CCLs transition toward a more oxidative metabolic state

as their growth rate slows, which may in turn trigger

increased oxPPP flux as an adaptive response to control

oxidative stress [39]. This dynamic flux rewiring is likely

due, at least in part, to activation of stress signaling

pathways involving AMP-activated protein kinase

(AMPK) and p53 [13,40,41,42�].

Impact on current bioprocessing strategies
Current mammalian bioprocessing strategies minimize

lactate formation by limiting nutrient availability.

Unlike many other cellular processes that are regulated

primarily by changes in protein expression, metabolic

pathways are able to respond rapidly to changing environ-

mental conditions through dynamic PTM and allosteric

control of enzymes. For example, Mulukutla et al. [6��]
recently applied a kinetic model of central carbon metab-

olism to show that feedback inhibition of PFK1 by lactate

can explain the shift from lactate production to lactate

consumption that is observed in some fed-batch cultures.

Similarly, allosteric regulation of PFK1 could also
Table 1

Summary of genetic manipulations that have been reported to improv

Host cell Genetic manipulation 

Hybridoma GLUT1 KD (ASO) Red

CHO OX of GLUT5 fructose transporter Red

grow

Hybridoma LDHA KD (HR) Red

CHO LDHA KD (ASO) Red

CHO LDHA KD (siRNA) Red

CHO LDHA KD + PDK KD (siRNA) Red

antib

BHK Cytosolic PC OX Red

lacta

ATP

HEK Cytosolic PC OX Red

amm

CHO Cytosolic PC OX Red

prote

CHO Mitochondrial PC OX Red

CHO and NS0 myeloma GS OX Con

thus

CHO OX of urea cycle enzymes Red

CHO OX of Vitreoscilla hemoglobin tPA 

no m

CHO OX of anti-apoptotic proteins Aven,

E1B-19K, and XIAP

Cells

durin

form
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underlie bistable switching between high-lactate and

low-lactate steady states that has been previously

reported in continuous hybridoma cultures [43,44]. The

standard industry approach to control this ‘metabolic

shift’ and thereby limit lactate accumulation involves

expansion of cells in a glucose-limited culture followed

by fed-batch feeding in which glucose is restricted to very

low levels for the duration of an extended production

phase [45]. Closed-loop bioreactor control strategies have

been implemented that effectively reduce lactate for-

mation by adjusting the glucose feed rate in response to

online pH [46�] or oxygen uptake rate (OUR) measure-

ments [47]. The latter strategy was extended to include

simultaneous control of glucose and glutamine feeding,

which reduced both lactate and ammonium accumulation

and improved peak VCD in fed-batch hybridoma cultures

[48].

Metabolic engineering can be applied to reduce

byproduct accumulation and enhance product titer by

genetic manipulation of host cells.

While optimization of nutrient feeding strategies and

bioreactor operation has been responsible for much of

the progress in mammalian cell culture over the past two

decades, metabolic engineering provides an alternative

approach to redirect cell physiology toward desired phe-

notypes. This has potential to minimize the time and cost

required to develop customized culture conditions for

each new cell line, to eliminate sources of cell-to-cell and
e metabolic phenotypes of industrial cell lines.

Phenotypic outcome Reference

uced glucose uptake but clones were unstable [54]

uced sugar uptake and lactate production when

n on fructose

[55]

uced glycolytic flux; improved VCD and IgG titer [50]

uced lactate production; suppressed apoptosis [56]

uced glycolytic flux; no reduction in growth rate [57]

uced lactate production; improved

ody productivity

[58]

uced glucose and glutamine uptake; reduced

te production; increased glucose oxidation and

 content; improved EPO production

[59,60]

uced glutamine consumption; reduced lactate and

onium production

[61,62]

uced lactate production and improved recombinant

in titer; impaired growth

[63]

uced glycolysis; no growth impairment [64]

ferred ability to grow in glutamine-free medium,

 reducing ammonium production

[65,66]

uced ammonium formation; improved growth rate [67]

production doubled despite a reduction in growth rate;

etabolic assays reported

[68]

 switched to lactate consumption

g exponential phase, resulting in reduced ammonium

ation and improved VCD and mAb titer

[69]

www.sciencedirect.com
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run-to-run variability, and to enable higher VCDs and

productivities by relaxing the requirement for strict nutri-

ent limitation [49]. Unfortunately, only a limited number

of genetic targets have been explored to date with mixed

results (Table 1). For example, partial knockdown of

LDHA activity in hybridoma cells was successful at

reducing lactate formation, but glutamine consumption

remained high while glucose consumption fell, indicating

that increased conversion of glucose-derived pyruvate

into mitochondria was not achieved [50].

One industrially relevant breakthrough has been the use

of the glutamine synthetase (GS) enzyme as a selection

marker for amplification of heterologous genes in host

cells [51]. Because most CCLs express low levels of GS,

which is needed to convert glutamate to glutamine,

glutamine is an ‘essential’ nutrient in mammalian cell

cultures. However, GS transfection followed by selection

on glutamine-free medium will confer a glutamine-inde-

pendent phenotype to high-expressing clones. This not

only eliminates the cellular requirement for glutamine,

but effectively abolishes ammonium production within

the culture. Overall, the examples summarized in Table 1

illustrate the promise of metabolic engineering for enhan-

cing cell culture bioprocesses through overexpression of

heterologous proteins or knockdown of native enzymes.

However, apart from the GS selection system, none of

these approaches have found widespread adoption in

industry to date [49].

Conclusions
A recent resurgence of interest in the metabolic adap-

tations of transformed cell lines and other rapidly pro-

liferating mammalian cells has led to a deeper

understanding of the molecular drivers behind their

paradoxical flux rewiring. However, CCLs are not

generally ‘locked’ in a glycolytic or glutaminolytic

phenotype, but instead can shift their metabolism

toward increased OXPHOS or to the use of alternative

substrates in response to nutrient depletion, environ-

mental perturbations, or genetic manipulations. This

apparent plasticity of cell metabolism has been the

source of consternation in the mammalian biotech

industry, as it represents a source of cell-to-cell and

run-to-run process variability. On the other hand, it also

holds promise for strategies that might target flexible

metabolic nodes to ‘corral’ cells into desirable pheno-

types, either by clever manipulation of culture con-

ditions and feeding strategies or by direct metabolic

engineering of bioenergetic pathways. Indeed, steady

progress has been made over the past 30 years to

mitigate undesirable metabolic phenotypes, and typical

antibody titers have increased by up to three orders of

magnitude [2]. Continued progress will depend upon

improved understanding of metabolic flux regulation in

CCLs and also a deeper appreciation of the tradeoffs

inherent to engineering cells to simultaneously achieve
www.sciencedirect.com 
high product titer, high specific production rate, and

high product quality [52]. Given the dynamic nature of

mammalian metabolic networks, it seems unlikely that

static genetic manipulations will provide optimal per-

formance over an entire production run. Instead, it may

be necessary to combine programmable gene switches

[53��] with closed-loop nutrient feeding strategies to

achieve maximum cell culture performance.
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