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ABSTRACT: Nonstationary metabolic flux analysis (NMFA)
is at present a very computationally intensive exercise,
especially for large reaction networks. We applied elemen-
tary metabolite unit (EMU) theory to NMFA, dramatically
reducing computational difficulty. We also introduced block
decoupling, a new method that systematically and compre-
hensively divides EMU systems of equations into smaller
subproblems to further reduce computational difficulty.
These improvements led to a 5000-fold reduction in simula-
tion times, enabling an entirely new and more complicated
set of problems to be analyzed with NMFA. We simulated a
series of nonstationary and stationary GC/MS measure-
ments for a large E. coli network that was then used to
estimate parameters and their associated confidence inter-
vals. We found that fluxes could be successfully estimated
using only nonstationary labeling data and external flux
measurements. Addition of near-stationary and stationary
time points increased the precision of most parameters.
Contrary to prior reports, the precision of nonstationary
estimates proved to be comparable to the precision of
estimates based solely on stationary data. Finally, we applied
EMU-based NMFA to experimental nonstationary measure-
ments taken from brown adipocytes and successfully esti-
mated fluxes and some metabolite concentrations. By using
NFMA instead of traditional MFA, the experiment required
only 6 h instead of 50 (the time necessary for most meta-
bolite labeling to reach 99% of isotopic steady state).
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Introduction

The goal of metabolic flux analysis (MFA) is the quantitative
determination of intracellular fluxes. Results are typically
obtained by (1) introducing a labeled substrate into a cell
culture at metabolic steady state, (2) allowing the system to
reach an isotopic steady state, (3) measuring relative labeling
in metabolic intermediates and byproducts, and (4) compu-
tationally processing these measurements to estimate fluxes
(Wiechert, 2001). An understanding of these fluxes can
facilitate identification of possible genetic targets for opti-
mization of a particular phenotype (Kiefer et al., 2004).
Similarly, flux data can shed light on the metabolic impact of
environmental conditions or previous genetic modifications
(Klapa et al., 2003; Sauer et al., 1997;Wittmann andHeinzle,
2002).

Nonstationary metabolic flux analysis (NMFA) is similar
to MFA with the provision that metabolite labeling is
sampled and measured during the transient period before
the system reaches an isotopic steady state. NMFA offers
significant advantages as compared to MFA:
� N
MFA experiments are much less costly (in terms of both
time and money) since one does not need to wait for
isotopic steady state to be established (Nöh et al., 2007).
� N
MFA is particularly suited for systems that cannot be
held at a metabolic steady state indefinitely (e.g., primary
cells or animal studies) because experimental durations
are greatly reduced.
� I
n some cases, NMFA identifies metabolic fluxes with
greater precision because some isotopically transient
measurements have greater sensitivities to fluxes (Nöh
et al., 2006).
� 2007 Wiley Periodicals, Inc.



� I
n some cases, NMFA measurement data can be used
to estimate metabolite concentrations in addition
to fluxes.
� 1
3C NMFA can successfully estimate fluxes in systems that
rely solely on single-carbon substrates (e.g., photoauto-
trophs and methylotrophs) whereas at isotopic steady
state, metabolites are uniformly labeled and no new
information is generated by a 13C tracer (Shastri and
Morgan, 2007).

MFA and NMFA are concerned with solving an ‘‘inverse
problem’’ in which fluxes (and in the case of NMFA,
concentrations) are estimated from metabolite labeling
distributions by means of an iterative least-squares fitting
procedure. At each iteration, a ‘‘forward problem’’ must
be solved in which metabolite labeling distributions are
simulated for a given metabolic network and a given set of
parameter estimates. The mismatch between the simulated
and experimental measurements is assessed and the
parameter estimates are updated to achieve an improving fit.

In the context of MFA, the forward problem can be
represented by systems of linear algebraic equations. NMFA,
on the other hand, requires the solution of systems of
ordinary differential equations, a significantly more difficult
task. This additional complexity means that the algorithms
for NMFA must be carefully designed so that the compu-
tational expense for large metabolic networks does not
become prohibitive. Currently, state-of-the-art algorithms
(using cumomer fractions as state variables) require more
than an hour to simulate isotopic labeling of a realistic
network model (Nöh et al., 2006; Wiechert et al., 1999).

In this work, we propose a new approach based upon the
Elementary Metabolite Unit (EMU) framework (Antonie-
wicz et al., 2007a) that efficiently and robustly handles the
inverse problem of NMFA by solving the forward problem
thousands of times faster than currently available methods.
Because of these improvements in the NMFA model, we are
able to show for the first time that fluxes and concentrations
can be estimated from nonstationary data for realistically
sized metabolic networks in short amounts of time.
Methods

EMU Network Decomposition

The nonstationary treatment presented here is built using
the mass isotopomer distributions (MIDs) of EMUs as state
variables (Antoniewicz et al., 2007a). An EMU is defined as a
distinct subset of a metabolite’s atoms. EMUs can exist in
a variety of mass states depending on their isotopic
compositions. An EMU in its lowest mass state is referred
to as Mþ0, while an EMU that contains one additional
atomic mass unit (e.g., due to the presence of a 13C atom in
place of a 12C atom) is referred to as Mþ1, with higher mass
states described accordingly. An MID is a vector that
contains the fractional abundance of each mass state of
an EMU.

The goal of an NMFA simulation is the calculation of
metabolite labeling patterns that are measurable by mass
spectroscopy; that is, the MIDs of a certain subset of EMUs
in the system. While the total number of all possible EMUs
in a network is equal to the number of isotopomers or
cumomers, in most cases only a small fraction of EMUs is
required to simulate measurable MIDs.

EMUs of metabolites in a common reaction network can
be assembled into an analogous EMU network composed of
EMU reactions where the MIDs of upstream EMUs affect
the MIDs of downstream EMUs. Oftentimes, EMU
networks can be decoupled into separate and smaller
subnetworks. Decoupling of EMU reactions based on (1)
EMU size and (2) network connectivity has previously been
discussed (Antoniewicz et al., 2007a). (EMU size is defined
as the number of atoms comprising a particular EMU.)
Because MIDs of EMUs depend only upon MIDs of equally
sized or smaller EMUs, the EMU network can be partitioned
into size-based networks, each containing equally sized
EMUs and depending on inputs only from smaller sized
EMUs. If smaller, completely independent EMU subnet-
works can be identified within these size-based networks,
even further decoupling can occur. Computational costs can
therefore be decreased in two ways: first, the total size of
the system can be reduced, and second, the system can be
divided into smaller subsystems that cumulatively can be
solved more quickly.
Block Decoupling

We propose a systematic and comprehensive method of
EMU reaction network decoupling in which metabolite
units are grouped into blocks. A block is defined as a set of
EMUs whose MIDs are mutually dependent within the
context of the EMU reaction network. Thus, by definition all
EMUs within a particular block (1) are of the same size, (2)
mutually approach an isotopic steady state, and (3) must be
solved for simultaneously and not sequentially. Blocks can
be arranged such that each is a self-contained subproblem
depending only upon the outputs of previously solved
blocks. This lets us work with smaller and more tractable
matrices, greatly increasing computational efficiency.

To arrange EMUs into blocks, we first regard the EMU
reaction network as a directed graph in which nodes
represent EMUs and edges represent EMU reactions. An
N�N adjacency matrix is then constructed for the directed
graph, where N is the total number of EMUs. In short, a
nonzero entry a(i, j) of the adjacency matrix indicates the
dependence of the ith EMU’s MID on the jth EMU’s MID.
We then perform a Dulmage–Mendelsohn decomposition
on the adjacencymatrix, returning an upper block triangular
matrix from which the diagonal blocks are extracted
(Dulmage and Mendelsohn, 1958; Pothen and Fan, 1990).
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Simple Network

A simple metabolic network appears in Figure 1a as an
example. Figure 1b delineates the atom transitions for
the network. Hypothetical metabolite C is assumed to be
measurable by GC/MS. After EMU decomposition, the
nonstationary system can be described in terms of 16 EMUs.
This represents a 44% reduction in state variables from the
29 cumomer fractions required to simulate the system with
the cumomer method. After decoupling based on EMU size
and connectivity, these 16 state variables can be separated
into four smaller subproblems (see Fig. 2a).

By applying Dulmage–Mendelsohn decomposition and
block decoupling to the simple network, we can achieve
even further system reduction. Figure 3 shows this
decomposition and the resulting blocks in matrix form.
Block decoupling improves upon previous methods,
enabling the 16 essential EMUs to be divided among eight
subproblems instead of four (see Fig. 2b). Table I provides a
detailed comparison of the model reductions achieved by
cumomer and EMU decompositions both with and without
block decoupling.
Figure 1. a A simple example network used to illustrate EMU network decom-

position. The network fluxes are assumed to be constant since the system is at a

metabolic steady state. Extracellular metabolites A and J are assumed to be at a fixed

state of isotopic labeling to which intracellular metabolites B, C, D, E, and F adapt over

time. b Atom transitions for the simple example network.
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Simulation of Metabolite Labeling

Decomposition of a network into blocks of EMUs generates
a cascaded system of ordinary differential equations, where
level n of the cascade represents the network of EMUs within
the nth block. Each system has the following form:

Cn �
dXn

dt
¼ An � Xn þ Bn � Yn (1)

The rows of the state matrix Xn correspond to MIDs of
EMUs within the nth block. The input matrix Yn is
analogous but with rows that are MIDs of EMUs that
are previously calculated inputs to the nth block. The
concentration matrix Cn is a diagonal matrix whose
elements are concentrations corresponding to EMUs in
Xn. Finally, the system matrices An and Bn describe the
network as follows:

Anði; jÞ ¼
�sum of fluxes consuming ith EMU inXn

flux to ith EMU inXn from jth EMU inXn

�
i ¼ j
i 6¼ j

(2)

Bnði; jÞ ¼ flux to ith EMU inXn from jth EMU inYn (3)

The least-squares fitting algorithm employed to solve the
inverse problem requires repeated calculation of first-order
derivatives, that is, sensitivities of simulated measurements
with respect to fluxes and concentrations. To this end,
implicit differentiation of Equation (1) yields

d

dt

@Xn

@p
¼ C�1

n � An �
@Xn

@p
þ @ðC�1

n � AnÞ
@p

� Xn

þ C�1
n � Bn �

@Yn

@p
þ @ðC�1

n � BnÞ
@p

� Yn ð4Þ

where p is a vector of metabolic fluxes and concentrations.
We integrate the system with a customized ordinary

differential equation solver that discretizes Equations (1)
and (4) by applying a first-order hold equivalent with
adaptive step size control (Powell et al., 1990). This method
is A-stable, simple to code, and enables large time steps by
making use of partial analytical solutions to the system
equations. More details are available in the appendix.
Flux and Concentration Estimation

Fluxes and concentrations are estimated by minimizing the
difference between measured and simulated data according
to the following equation (Antoniewicz et al., 2006; Nöh
et al., 2006):

min
u;c

F ¼ ½mðu; c; tÞ � m̂ðtÞ�T � S�1
m � ½mðu; c; tÞ � m̂ðtÞ�

s:t: N � u � 0; c � 0

(5)
DOI 10.1002/bit



Figure 2. a EMU network decomposition for the simple example network (Fig. 1) generated to simulate the labeling of metabolite C. The EMU reaction network was decoupled

based on EMU size and network connectivity. b EMU network decomposition for the same network using block decoupling. Subscripts refer to the atoms of a compound that are

contained within the EMU.

Young et al.: An EMU-Based NMFA Method 689

Biotechnology and Bioengineering. DOI 10.1002/bit



Figure 3. Dulmage–Mendelsohn decomposition of an adjacency matrix repre-

senting the EMU reaction network for the simple example network described in

Figure 1. A nonzero entry (denoted by a black circle) at the ith row and jth column of the

matrix represents the dependence of the ith EMU’s MID on the jth EMU’s MID. The

upper block triangular matrix resulting from the Dulmage–Mendelsohn decomposition

can be separated into blocks as indicated by bold lines. Blocks can be solved in a

sequential order, beginning at the lower right-hand corner and working upwards.
where F is the objective function to be minimized, u is a
vector of free fluxes, c is a vector of metabolite concentra-
tions, t is time, m(u, c, t) is a vector of simulated
measurements, m̂ðtÞ is a vector of observed measurements,
Sm is the measurement covariance matrix, and N is the
nullspace of the stoichiometric matrix. We have imple-
mented a reduced gradient method to handle the linear
constraints of this problem within a Levenberg–Marquardt
nonlinear least-squares solver (Gill et al., 1981; Madsen
et al., 2004).

Calculation of parameter standard errors requires the
inverse Hessian of F, which becomes ill-conditioned when
Table I. A comparison of modeling approaches to simulate the dynamic

labeling of a simple example network.

Model Cumomer EMU EMU

Decoupling method Size Size/connectivity Blocks

(Size) # of vars (1) 12 (1) 9 (1) 3, 3, 2, 1

(2) 11 (2) 4 (2) 3, 1

(3) 5 (3) 2 (3) 2

(4) 1 (4) 1 (4) 1

Total variables 29 16 16

EMU network decomposition followed by block decoupling minimizes
the number of state variables both in the overall system and within any one
subproblem. The subproblems are listed by EMU size (or in the case of
cumomers, by weight). The EMU sizes (or cumomer weights) are indicated
within parentheses and the number of variables within each subproblem
follow. For instance, the entry ‘‘(2) 3, 1’’ indicates that there are two
subproblems involving EMUs of size 2. One subproblem contains three
variables and the other only one.
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some parameters are poorly identifiable. Because the
Hessian is obtained by numerically integrating the
measurement sensitivities in Equation (4), it is contami-
nated by numerical errors in the nonstationary case. Upon
matrix inversion, even small errors can greatly distort
standard error estimates, rendering them nearly mean-
ingless. As such, we compute nonlinear flux confidence
intervals (using parameter continuation around the optimal
solutions) instead of relying upon local standard errors
(Antoniewicz et al., 2006). These confidence intervals,
thoughmore computationally expensive to obtain than local
standard errors, yield a significantly more reliable and
realistic description of the true parameter uncertainty.
Results

Small E. coli Network

To compare the performance of our approach to prior
methods, we reconstructed the simplified E. coli model
described by Nöh consisting of 28 free fluxes and 16
metabolite pools (Nöh et al., 2006). Application of the
EMU-based algorithm to this system leads to a 5000-fold
reduction in the computational time required for parameter
and sensitivity simulation of the forward problem (from
83 min on an AMD Opteron 2000þ down to 1 s on a
2.0 GHz T2500 dual core processor). Whereas computa-
tional time for parameter estimation via cumomers
was conjectured to be 24–48 h, we estimated fluxes and
concentrations in less than 1 min, beginning from a
randomized set of initial parameters.
Large E. coli Network

Because of the increased efficiency of EMU-based NMFA, we
chose to apply our method to a larger and more realistic
E. coli network. Specifically, we modeled the central
metabolism of a strain capable of producing high levels
of 1,3-propanediol (PDO) using a network that includes 35
free fluxes and 46 metabolite pools (Antoniewicz et al.,
2007b). (A complete list of reactions and atom transitions is
available in Table S-I of Supplementary Materials.) The size
of this problem can be reduced by over 90% via EMU
decomposition (relative to isotopomers/cumomers) and
can be further parsed into 47 subproblems with block
decoupling (compared to only 14 with decoupling by
size and network connectivity). Block decoupling led to a
27% decrease in computational time relative to decoupling
based only upon size and connectivity. Table II provides a
detailed comparison of the model reductions achieved by
cumomer and EMU decompositions both with and without
block decoupling.

To investigate the relationship between sampling times
and parameter identifiability, we generated a series of
simulated data sets. We drew flux values from a previously
DOI 10.1002/bit



Table II. A comparison of modeling approaches to simulate the dynamic labeling of 33 GC/MS fragments in the large E. coli metabolic network.

Model Cumomer EMU EMU

Decoupling Method Size Size/connectivity Blocks

(Size) # of Vars (1) 54 (1) 146 (1) 117, 24, 1� 5

(2) 241 (2) 90 (2) 34, 22, 9, 5� 2, 4, 2, 1� 9

(3) 527 (3) 47 (3) 26, 5� 2, 4, 1� 7

(4) 771 (4) 12, 8, 1� 2 (4) 8, 6, 5, 1� 3

(5) 876 (5) 5, 1� 4 (5) 5, 1� 4

(6) 832 (6) 2 (6) 2

(7) 655 (7) none (7) none

(8) 404 (8) 1 (8) 1

(9) 183 (9) 1 (9) 1

(10) 57

(11) 11

(12) 1

Total variables 4,612 318 318

Simulation time Not available 22 seconds 16 seconds

Subproblems are specified as in Table I. Multiple occurrences of a particular size of subproblem are indicated with the multiplication symbol; that is,
‘‘5� 2’’ indicates that two subproblems of size 5 exist within the system. EMU network decomposition dramatically reduces the number of state variables
within the overall system. Block decoupling further simplifies the system by minimizing the number of state variables within any one subproblem, reducing
computational time by an additional 27%.
published stationary MFA experiment involving the afore-
mentioned PDO-producing strain (Antoniewicz et al.,
2007b) and metabolite concentration values from various
literature sources on both E. coli and S. cerevisae (Buchholz
et al., 2001; Gombert et al., 2001). Three different sets of
measurements were simulated:
Figure 4. Measurement time points for the three simulated experiments involving th

profiles for three representative measured metabolite fragments are overlaid to convey t
� S
e la

he
hort nonstationary experiment: Two sets of replicate
measurements were taken every second for 15 s following
the introduction of tracer to the culture (for a total
of 30 sets of measurements). All measured metabolite
fragments remained isotopically transient during this
regime.
rge E. coli model. Time points are indicated by gray vertical lines. Mþ0 labeling

time scale of the isotopic transience in the system.
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Table III. External fluxes and free amino acid fragment MIDs measured
� L

in the simulated study of the large E. coli network.

Measurable external fluxes

Metabolite Flux

Gluc Glucext!G6P

Cit Citext!Cit

69
ong nonstationary experiment: One set of measure-
ments was taken every second for 15 s following the
introduction of tracer. For the next 75 s, measurements
were then taken every 5 s, giving a total of 30 sets of
measurements. By the end of this period, all measured
metabolite fragments were within 99% of isotopic steady
state.
CO2 CO2!CO2,ext
� S

Glyc Glycext!Glyc

Ac Ac!Acext
PDO PDO!PDOext

Biomass Various metabolites!Biomass

Measurable GC/MS fragments

Metabolite Mass Carbons Formula

AKG 346 12345 C14H28O5NSi2
Ala 232 23 C10H26ONSi2
Ala 260 123 C11H26O2NSi2
Asp 302 12 C14H32O2NSi2
Asp 376 12 C16H38O3NSi3
Asp 390 234 C17H40O3NSi3
Asp 418 1234 C18H40O4NSi3
Cit 459 123456 C20H39O6Si3
Glu 330 2345 C16H36O2NSi2
Glu 432 12345 C19H42O4NSi3
Gly 218 2 C9H24ONSi2
Gly 246 12 C10H24O2NSi2
Ile 200 23456 C11H26NSi

Ile 274 23456 C13H32ONSi2
Leu 274 23456 C13H32ONSi2
Mal 419 1234 C18H39O5Si3
Met 218 2345 C10H24NSiS

Met 292 2345 C12H30ONSi2S

Met 320 12345 C13H30O2NSi2S

Phe 234 23456789 C14H24NSi

Phe 302 12 C14H32O2NSi2
Phe 308 23456789 C16H30ONSi2
Phe 336 123456789 C17H30O2NSi2
Pyr 174 123 C6H12O3NSi

Ser 288 23 C14H34ONSi2
Ser 302 12 C14H32O2NSi2
Ser 362 23 C16H40O2NSi3
Suc 289 1234 C12H25O4Si2
Thr 376 234 C17H42O2NSi3
Thr 404 1234 C18H42O3NSi3
Tyr 302 12 C14H32O2NSi2
Val 260 2345 C12H30ONSi2
Val 288 12345 C13H30O2NSi2
tationary experiment: Measurements were conducted at a
time sufficiently large such that all metabolite labeling was
assumed constant. Thirty replicate sets of measurements
were made such that the total number of measurements in
all experiments was equal.

The timelines of these three experiments and their
corresponding labeling measurements are illustrated in
Figure 4. Table III lists the available measurements, which
include 33 mass spectroscopy fragments and seven external
fluxes. We assume that no metabolite concentrations are
measurable. Standard errors of 5% for external fluxes and
0.3–1 mol% for GC/MSMIDs were assumed and introduced
randomly and normally.

Fluxes and concentrations were estimated for each
experiment. One forward nonstationary simulation of
metabolite labeling required 16 s of computational time.
Parameter estimation, beginning with a randomly distrib-
uted guess of concentrations and fluxes, ran in under
15 min. Nonlinear confidence intervals were also calculated
for each estimated parameter. The results have been grouped
as net fluxes, exchange fluxes, andmetabolite concentrations
and displayed in Figs. 5–7, respectively. (Results are also
listed in Tables S-III, S-IV, and S-V of Supplementary
Materials.) The wide majority of parameter values were
recovered within their respective 95% confidence intervals;
those values that were not recovered still fell reasonably near
their estimated intervals. Exchange fluxes were scaled
according to

v
½0;1�
xch ¼ vxch

vxch þ vref
(6)

where vxch is the unscaled exchange flux, vref is the reference
flux (in this case, glucose uptake), and v

½0;1�
xch is the

scaled exchange flux (Wiechert and de Graaf, 1997).
Net fluxes were estimated most accurately and precisely.

Most estimated net flux values fell within 10% of the actual
values and possessed confidence intervals ranging between
�5 and �20%. While the stationary measurements generat-
ed estimates significantly closer to actual values, confidence
intervals across all three experiments were comparable in
width.

Exchange flux estimation was considerably more difficult.
Out of the 24 total exchange fluxes, 10 were unidentifiable
(or nearly unidentifiable). Even when confidence intervals
were obtained, they tended to be extremely broad. For the
majority of these intervals, only an upper or a lower bound
could be found. Overall, none of the three experiments
2 Biotechnology and Bioengineering, Vol. 99, No. 3, February 15, 2008
could claim significantly more precise confidence intervals.
On a parameter-by-parameter basis, however, precision
varied greatly between the different experiments.

Both lower and upper bounds were successfully found for
14 metabolite concentrations. Upper bounds were identified
for the remaining concentrations. Confidence intervals
ranged between�5 and�25% except for pyruvate (�75%).
The long nonstationary experiment consistently produced
narrower confidence intervals than the short experiment.
(Obviously, no metabolite concentrations could be obtained
in the stationary experiment.)
DOI 10.1002/bit



Figure 5. A comparison of estimated independent net fluxes in the large E. coli network using short nonstationary, long nonstationary, and stationary measurements. Actual

flux values are indicated by black arrowheads. Accurate 95% confidence intervals are indicated by horizontal error bars while hash marks within these bars indicate estimated flux

values. Values are in units of h�1 and are scaled such that the Glucext !G6P flux is 100 h�1.
Brown Adipocytes

EMU-based NMFA was lastly applied to actual experimental
data in order to estimate fluxes. Brown adipocytes were
cultured as described by Yoo et al. (2007). The adipocyte
metabolic network is shown in Figure 8 (Antoniewicz et al.,
2007c). (A detailed list of atom transitions for each reaction
can be found in Table S-II of Supplementary Materials.)
After cells were mature and at a metabolic steady state, the
growthmediumwas replaced with assay medium containing
[U-13C]glucose and unlabeled glutamine. At 2, 4, and 6 h,
cells were quenched and intracellular metabolites were
extracted, derivatized, and analyzed with GC/MS. The
metabolite fragments that were subsequently measured
are listed in Table IV. Standard errors of at most 1.5 mol%
were assumed for all GC/MS measurements.

Over the three time points we collected 249 mass
isotopomer abundances while the model attempted to fit 12
free fluxes and 14 metabolite concentrations. Hence, the
system possessed 249�12�14¼ 223 redundant measure-
ments and the expected lower and upper bounds of the 95%
confidence region were 183 and 266, assuming that the
minimized sum of squared residuals in Equation (5)
follows a x2 distribution. A nonstationary flux estimation
was conducted to fit the model to these measurements. The
resulting minimized sum of squared residuals was 251,
indicating that the fit was statistically acceptable. The
estimated labeling profiles are shown together with the
measurements in Figure 9. Net and exchange flux estimates
are presented in Figure 10. These parameters’ estimated
numerical values along with their accurate 95% confidence
intervals are listed in Table V. Exchange fluxes are calculated
according to Equation (6), where vref is the glucose uptake
flux.
Discussion

Our experiments involving the large E. coli model
demonstrated that metabolic parameters can be successfully
estimated using only external flux measurements and
nonstationary labeling measurements. We were able to
estimate all net fluxes, most exchange fluxes, and some
metabolite concentrations with no need for concentration
measurements or stationary flux measurements. This same
theme was seen in the adipocyte experiment; with only
Young et al.: An EMU-Based NMFA Method 693
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Figure 6. A comparison of estimated exchange fluxes in the large E. coli network using short nonstationary, long nonstationary, and stationary measurements. Actual flux

values are indicated by black arrowheads. Accurate 95% confidence intervals are indicated by horizontal error bars while hash marks within these bars indicate estimated flux

values. Values are dimensionless and are scaled according to Eq. (6). Unidentifiable and nearly unidentifiable fluxes were omitted.
labeling data taken during the nonstationary regime, all net
fluxes, some exchange fluxes, and three metabolite
concentrations were estimated. In this experiment, para-
meters were less identifiable because only three measure-
ment time points were available and no external fluxes were
measured.

The simulated E. coli experiments do indicate that there
are some limitations when relying only upon nonstationary
data. Confidence intervals produced from the short
nonstationary measurements were the least likely to
recapture original parameter values. Across the three
experiments, only five of the original parameter values fell
significantly outside of their respective 95% confidence
intervals and all five of these intervals were generated from
the short nonstationary experiment. Intervals from the long
nonstationary and stationary experiments, however, sucess-
fully recovered the actual values.

Previous research has indicated that more flux informa-
tion may be available when drawing measurements from the
694 Biotechnology and Bioengineering, Vol. 99, No. 3, February 15, 2008
isotopically nonstationary regime of a labeling experiment,
leading to more precise confidence intervals (Nöh et al.,
2006). Our analysis of the large E. coli network demonstrated
that, in general, the nonlinear confidence intervals of almost
all parameters estimated in both the short and long
nonstationary experiments were comparable to those of
the stationary experiment. This indicates that the gains due
to additional sensitivity in the nonstationary measurements
are most likely offset by the increased number of total
parameters that need to be estimated by NMFA. There are
three likely reasons for the discrepancy between our results
and prior findings:
� M
ost importantly, the total number of measurements
were not standardized across all conditions in Nöh’s
study. Confidence intervals for the stationary case relied
upon only one set of measurements whereas the
nonstationary cases with multiple time points comprised
multiple sets. To ensure a fair comparison, we used
DOI 10.1002/bit



Figure 7. A comparison of estimated metabolite concentrations in the large E. coli network using short nonstationary and long nonstationary measurements. Actual

concentration values are indicated by black arrowheads. Accurate 95% confidence intervals are indicated by horizontal error bars while hash marks within these bars indicate

estimated concentration values. Values are dimensionless and are scaled such that the Glucext!G6P flux is 100 h�1. Concentrations with lower bounds of zero were omitted.

Fig
can
replicate measurements so that the total quantity of
measurements was equal in every simulated experiment.
� O
ur rigorous and accurate determination of nonlinear
confidence intervals revealed that the linearized standard
ure 8. A simplified model of brown adipocyte metabolism. (Atom transitions

be found in Table S-II of Supplementary Materials.).
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errors employed in previous studies are unreliable and
often much smaller than the true parameter uncertainty.
� O
ur nonstationary estimations did not include concen-
tration measurements while Nöh’s estimations did. These
additional measurements also play a role in the smaller
standard errors predicted by Nöh.
ble IV. Metabolite fragment MIDs measured in the brown adipocyte

dy.

asurable GC/MS fragments

tabolite Mass Carbons Formula

232 23 C10H26ONSi2
260 123 C11H26O2NSi2

p 316 234 C15H34O2NSi2
p 418 1234 C18H40O4NSi3
t 459 123456 C20H39O6Si3
u 330 2345 C16H36O2NSi3
u 432 12345 C19H42O4NSi3
c 233 23 C10H25O2Si2
c 261 123 C11H25O3Si2
l 419 1234 C18H39O5Si3
lm 270 1–16 C17H34O2

r 174 123 C6H12O3NSi

Young et al.: An EMU-Based NMFA Method 695

Biotechnology and Bioengineering. DOI 10.1002/bit



Figure 9. Fitted MIDs versus time for the measured metabolite fragments overlaid with actual measurements from the nonstationary brown adipocyte experiment. Error bars

indicate 95% confidence intervals for the measurements.
Both the E. coli and adipocyte experiments confirm
that NMFA can yield important information regarding
metabolite concentrations even when those concentrations
are not directly measured. Admittedly, most metabolite
concentrations in both the large E. coli and brown adipocyte
estimations are unidentifiable. The reason is twofold. First,
the time intervals between measurements are too large for
these pools to influence observable changes in labeling; that
is, these pools appear to be at a pseudo-steady state relative
to the sampling time scale. Second, because labeling is
measured in only a subset of metabolites, there is
considerable ambiguity with regard to the concentrations
of unmeasured metabolites. At the very least, upper bounds
can be determined for all concentrations. We were able to
estimate both upper and lower bounds for metabolites that
(1) were at high enough concentrations to influence the
labeling dynamics on a time scale similar to the sampling
time scale and (2) were the targets of labeling measurements
or were ‘‘sandwiched’’ between other metabolites where
labeling measurements were available. In the E. coli
experiment, the concentrations of almost all metabolites
whose labeling was measured could be estimated with a 95%
confidence interval on the order of �10% of the estimated
value. The adipocyte experiment generated three concen-
696 Biotechnology and Bioengineering, Vol. 99, No. 3, February 15, 2008
tration estimates with nonzero lower bounds. However,
these confidence intervals were much less informative
(between �25 and �55% of the estimated value), most
likely because labeling was measured at only three widely
spaced time points as opposed to 15 closely spaced time
points in the short nonstationary E. coli case.

Several factors frame the brown adipocyte system as an
ideal subject for nonstationary analysis. Studying the
estimated parameters in the system, we find that the
measured metabolites do not reach a stationary labeling
state (99% of the steady-state value) until between 35 and
55 h, except for palmitate, which requires 250 h due to its
slow turnover in these cells. In such a case, the utility of
nonstationary flux analysis becomes quite apparent. Flux
estimates can be obtained in only a fraction of the
experimental time, leading to large cost and time savings.
Moreover, even if money and time were not limiting factors,
it is highly unlikely that the adipocytes could be kept
metabolically or phenotypically stable for such lengthy
durations, making NMFA not just a convenient tool in this
situation, but an essential one.

Finally, we have shown that application of the EMU
framework to NMFA results in dramatic improvements in
network decomposition and parameter estimation. These
DOI 10.1002/bit



Figure 10. Visualization of flux estimates for nonstationary flux analysis of

brown adipocytes. Net flux directionality is indicated by arrows and net flux magnitude

is proportional to line thickness while exchange flux magnitude correlates to arrow

color. Net flux values are in units of h�1 and have been scaled such that the

½ Glucext !Pyr flux is 100 h�1. Exchange flux values are dimensionless and have

been scaled according to Eq. (6).

Table V. Estimated net fluxes (!), exchange fluxes ($), and

concentrations (pool) and their respective 95% confidence intervals for

brown adipocyte metabolism.

Parameter Value Interval

Pyr!AcCoAmit 17.0 [14.3, 22.1]

Suc!Mal 54.0 [45.6, 60.4]

Mal!OAA �73.1 [�92.4, �55.8]

AcCoAcyt! 1=8 Palm 8.6e-3 [0, 11.9]

Pyr$ Lac 0.25 [0, 0.49]

Pyr$Ala 0.00 [0, 0.46]

Cit$ ICit 1.00 [0.18, 1]

Glu$AKG 1.00 [0.77, 1]

ICit$AKG 0.23 [0.18, 1]

Suc$Mal 0.53 [0.45, 0.60]

Mal$OAA 1.00 [0.80, 1]

Mal$Asp 0.07 [0, 1]

AcCoAcyt pool 1.0e-5 [0, 6.1]

AcCoAmit pool 126.4 [82.1, 189.9]

AKG pool 3.6e-4 [0, 23.7]

Ala pool 2.2e-3 [0, 75.0]

Asp pool 4.0e-5 [0, 40.0]

Cit pool 2.2e-4 [0, 13.0]

Glu pool 3.6e-4 [0, 23.7]

ICit pool 2.1e-4 [0, 13.0]

Lac pool 178.4 [112.9, 225.6]

Mal pool 8.1e-4 [0, 40.0]

OAA pool 6.7e-4 [0, 40.0]

Palm pool 6.3e-2 [0, 90.3]

Pyr pool 2.5e-3 [0, 64.3]

Suc pool 208.1 [111.6, 323.8]

Concentrations are dimensionless and net fluxes have units of h�1; both
have been scaled such that the ½ Glucext!Pyr flux is 100 h�1. Exchange
fluxes are dimensionless and scaled according to Equation (6).
advances make feasible an entirely new realm of problems in
nonstationary flux analysis. Previously, for instance, the
analysis of systems with complicated reaction networks,
multiple isotopic tracers, or large molecules were imprac-
tical targets for NMFA. By shifting to an EMU framework,
these kinds of problems are now solvable. The EMU
framework also makes possible the calculation of accurate
confidence intervals for parameters estimated by NMFA, a
computationally intensive exercise that otherwise would be
infeasible.
Nomenclature
3PG
 3-phosphoglycerate
6PG
 6-phosphogluconate
Ac
 acetate
AcCoA
 acetyl coenzyme A
AKG
 a-ketoglutarate
Ala
 alanine
Arg
 arginine
Asn
 asparagine
Asp
 aspartate
Cit
 citrate
CO2
 carbon dioxide
Cys
 cystine
Cyt
 cytosolic
DHAP
 dihydroxyacetone phosphate
E4P
 erythrose 4-phosphate
EC2
 transketolase 2-carbon intermediate
EC3
 transaldolase 3-carbon intermediate
EMU
 elementary metabolite unit
Ext
 external
F6P
 fructose 6-phosphate
FBP
 fructose 1,6-biphosphate
FTHF
 formyltetrahydrofolate
Fum
 fumarate
G6P
 glucose 6-phosphate
GAP
 glyceraldehyde 3-phosphate
GC/MS
 gas chromatography/mass spectroscopy
Gln
 glutamine
Glu
 glutamate
Gluc
 glucose
Gly
 glycine
Glyc
 glycerol
Glyc3P
 glycerol 3-phosphate
HPA
 3-hydroxypropionaldehyde
ICit
 isocitrate
Ile
 isoleucine
KDPG
 2-keto-3-deoxy-6-phosphogluconate
Lac
 lactate
Leu
 leucine
LL-DAP
 LL-diaminopimelate
Mal
 malate
MEETHF
 methylenetetrahydrofolate
Met
 methionine
METHF
 methyltetrahydrofolate
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MFA
698
metabolic flux analysis
Mit
 mitochondrial
NMFA
 nonstationary metabolic flux analysis
OAA
 oxaloacetate
Palm
 palmitate
PDO
 1,3-propanediol
PEP
 phosphoenolpyruvate
Phe
 phenylalanine
Pro
 proline
Pyr
 pyruvate
R5P
 ribose 5-phosphate
Ru5P
 ribulose 5-phosphate
S7P
 seduheptulose 7-phosphate
Ser
 serine
Suc
 succinate
SucCoA
 succinyl coenzyme A
Thr
 threonine
Tyr
 tyrosine
Val
 valine
X5P
 xylulose 5-phosphate
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Appendix

Customized Differential Equation Solver

EMU labeling states and sensitivities are described by
Equations (1) and (4) and can be simplified as shown below:

dXn

dt
¼ Fn � Xn þGn (A-1)

d

dt

@Xn

@p
¼ Fn �

@Xn

@p
þHn (A-2)

by making use of the following substitutions:

Fn ¼ C�1
n � An (A-3)

Gn ¼ C�1
n � Bn � Yn (A-4)

Hn ¼
@Fn

@p
� Xn þ

@Gn

@p
(A-5)

The functions Gn and Hn potentially comprise convolu-
tions of MIDs belonging to EMUs of previously solved
blocks (a result of EMU condensation reactions) and as such
Equations (A-1) and (A-2) lack analytical solutions. Partial
Biotechnology and Bioengineering, Vol. 99, No. 3, February 15, 2008
analytical solutions, however, can be written as

Xnðt1Þ ¼ eFn�Dt � Xnðt0Þ þ
ZDt

0

eFn�ðDt�tÞ �Gnðt þ t0Þ � dt

(A-6)

@Xn

@p

����
t1

¼ eFn�Dt � @Xn

@p

����
t0

þ
ZDt

0

eFn�ðDt�tÞ �Hnðt þ t0Þ � dt

(A-7)

where the initial state of the system at time t0 is assumed to
be known and Dt is defined as t1�t0. Again, the integrals
in Equations (A-6) and (A-7) lack analytical solutions.
Instead, we evaluate at discrete points by applying a first-
order-hold equivalent with adaptive step size control
to numerically integrate and solve the problem (Powell
et al., 1990). This discretized approximation can be
expressed as follows:

ðXnÞkþ1 ¼ Fn � ðXnÞk þ Gn � ðGnÞk
þVn � ½ðGnÞkþ1 � ðGnÞk�

(A-8)

@Xn

@p

� �
kþ1

¼ Fn �
@Xn

@p

� �
k

þGn � ðHnÞk

þVn � ½ðHnÞkþ1 � ðHnÞk�
(A-9)

where the transition matrices Fn, Gn, and Vn are functions
of fluxes, concentrations, and the time step magnitude
according to the following relationship:

FFn GGn VVn

0 0 0

0 0 0

2
64

3
75 ¼ exp

Fn � Dt I � Dt 0

0 0 I

0 0 0

2
64

3
75

0
B@

1
CA
(A-10)

where the exponential function refers to the matrix
exponential (Golub and Van Loan, 1996). At each time
point, Yns and Xns are calculated in ascending order until
the EMUs representing all desired measurements are
obtained.
References

Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2006. Determination of

confidence intervals of metabolic fluxes estimated from stable isotope

measurements. Metab Eng 8(4):324–337.

Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2007a. Elementary

metabolite units (EMU): A novel framework for modeling isotopic

distributions. Metab Eng 9(1):68–86.

Antoniewicz MR, Kraynie DF, Laffend LA, González-Lergier J,

Kelleher JK, Stephanopoulos G. 2007b. Metabolic flux analysis in a
DOI 10.1002/bit



nonstationary system: Fed-batch fermentation of a high yielding

strain of E. coli producing 1,3-propanediol. Metab Eng 9(3):277–

292.

AntoniewiczMR, YooH, Kelleher JK, Stephanopoulos G. 2007c. Global flux

quantification and statistical analysis in stable-isotope studies quanti-

fies effects of IRS1 knockout in brown adipose cells. J Biol Chem In

Submission.

Buchholz A, Takors R, Wandrey C. 2001. Quantification of intracellular

metabolites in Escherichia coli K12 using liquid chromatographic-

electrospray ionization tandem mass spectrometric techniques. Anal

Biochem 295(2):129–137.

Dulmage AL, Mendelsohn NS. 1958. Coverings of bipartite graphs. Canad J

Math 10:517–534.

Gill PE, Murray W, Wright MH. 1981. Practical optimization. London:

Academic Press.

Golub GH, Van Loan CF. 1996. Matrix computations. Baltimore: Johns

Hopkins University Press.

Gombert AK, Moreira dos Santos M, Christensen B, Nielsen J. 2001.

Network identification and flux quantification in the central metabo-

lism of Saccharomyces cerevisiae under different conditions of glucose

repression. J Bacteriol 183(4):1441–1451.

Kiefer P, Heinzle E, ZelderO,WittmannC. 2004. Comparativemetabolic flux

analysis of lysine-producing Corynebacterium glutamicum cultured on

glucose or fructose. Appl Environ Microb 70(1):229–239.

Klapa MI, Aon JC, Stephanopoulos G. 2003. Systematic quantification of

complex metabolic flux networks using stable isotopes and mass

spectrometry. Eur J Biochem 270(17):3525–3542.

Madsen K, Nielsen HB, Tingleff O. 2004. Methods for non-linear

least squares problems. 2nd edition. Lecture notes, Technical University

of Denmark. http://www2.imm.dtu.dk/pubdb/p.php?3215.
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