

Tetrahedron 61 (2005) 89-95

Tetrahedron

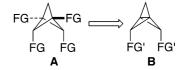
9,9-Dimethyl-8,10-dioxapentacyclo[5.3.0.0^{2,5}.0^{3,5}.0^{3,6}]decane and naphthotetracyclo[5.1.0.0^{1,6}.0^{2,7}]oct-3-ene: new substituted [1.1.1]propellanes as precursors to 1,2,3,4-tetrafunctionalized bicyclo[1.1.1]pentanes

Baldur Stulgies, Dennis P. Pigg, Jr., Piotr Kaszynski* and Zbigniew H. Kudzin[†]

Organic Materials Research Group, Department of Chemistry, Vanderbilt University, Box 1822, Station B, Nashville, TN 37235, USA

Received 21 September 2004; revised 19 October 2004; accepted 20 October 2004

Available online 11 November 2004


Abstract—Two new substituted [1.1.1]propellanes have been generated from the corresponding bicyclo[1.1.0]butanes in either single-step (1a) or four-step procedures (1b). The observed degree of double lithiation of the bicyclo[1.1.0]butanes is discussed in the context of DFT computational results. Addition reactions across the central C(1)–C(3) bonds of the propellanes were studied. Only the propellane 1b gave the biacetyl addition product.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Polyfunctionalized bicyclo[1.1.1]pentanes (BCPs)¹ bearing functional substituents in addition to the two bridgehead ones are rare and sought-after as potential structural elements for molecular electronics and architecture.^{2–4} Among a handful of such derivatives are 2,2-dichloro-⁵ and polyfluoro derivatives,^{6,7} which were obtained by direct halogenation of bicyclo[1.1.1]pentane-1,3-dicarboxylic acid or its esters.⁸ Further transformations of the halogens to other groups have not been successful. In contrast, transformations of the carboxyl groups proceeded smoothly,^{7,9} which enable the generation of 2,2-dichloro[1.1.1]propellane.⁹ Recently, chlorination of the 2,4-dimethylene derivative of bicyclo[1.1.1]pentane-1,3-dicarboxylic acid and subsequent transformations of the halogenated products led to bicyclo[1.1.1]pentane-1,2,3,4-tetracarboxylic acid, the first example of tetrafunctionalized BCP **A**.¹⁰

A more versatile and general approach to polyfunctionalized BCPs **A** may, in principle, involve appropriately substituted [1.1.1]propellanes **B** (Fig. 1). Subsequent addition of biacetyl across the central bond of the

Figure 1. Retrosynthetic analysis for preparation of 1,2,3,4-tetrafunctionalized bicyclo[1.1.1]pentanes **A** through propellanes **B**.

propellane¹¹ introduces a carbonyl group amenable to further functional group manipulation. ^{12–14}

Most [1.1.1]propellanes prepared to date are mono or geminally disubstituted derivatives of the parent [1.1.1]propellane or its 2,4-dimethylene or 2,4-trimethylene derivatives. Only a handful of [1.1.1]propellanes are substituted with aryl, 16-18 vinyl or alkoxymethyl groups which are inert to propellane generation conditions and can be converted to the versatile carboxyl group. To our knowledge there is only one propellane with a benzyl group bridging the 2 and 4 positions, 16 which is a potential precursor to 1,2,3,4-tetrafuctionalized BCPs A. Unfortunately, the chemistry of this propellane has not been investigated.

Keywords: Substituted bicyclo[1.1.0]butanes and [1.1.1]propellanes; Theoretical models; Radical reactions.

^{*} Corresponding author. Tel.: +1 615 322 3458; fax: +1 615 343 1234; e-mail: piotr.kaszynski@vanderbilt.edu

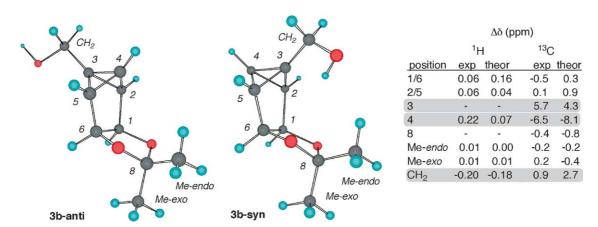
[†] On leave from University of Lodz, Poland.

In order to develop synthetic access to tetrafunctionalized BCPs **A**, we focused on two new propellanes **1a** and **1b**. Here, we report the generation of the two substituted propellanes and some reactions at the central C–C bond with the emphases on the addition of biacetyl.

2. Results and discussion

2.1. Preparation of propellanes

Propellanes **1a** and **1b** were prepared from appropriate bicyclo[1.1.0]butanes **2a** and **2b** using the methodology developed by Szeimies. The former propellane was prepared in a single annelation step with ClCH₂I taking advantage of the almost quantitative double deprotonation of **2a** (Scheme 1). The propellane **1a** was prepared in yields estimated at 30–40% and used as crude solutions in subsequent reactions.


Scheme 1.

In contrast, propellane **1b** could not be prepared in the single-step procedure since the double deprotonation of **2b** was inefficient. Using n-BuLi, sec-BuLi or tert-BuLi at different temperatures, the double deprotonation occurred to less than 20%, as determined by quenching with D_2O and GCMS analysis.²¹ Also prolonged reaction times led to

decomposition of the precursor **2b**. This necessitated the use of the four-step route¹⁶ shown in Scheme 2. Thus, hydroxymethylation of **2b** gave alcohol **3b** as a mixture of two isomers in about 2:1 ratio contaminated with a more polar compound presumably the corresponding bis(hydroxymethyl) derivative. After purification on alumina, the isomeric mixture of alcohols **3b** was brominated and the resulting **4b** was subsequently converted to the dihalide **5b** using the general literature conditions.¹⁶ To improve the separation of the pure **5b**, small amounts of EtOH were added in the end of the reaction to convert the residual Ph₃P to the oxide. The overall average yield for the three steps was about 25%.

To assign stereochemistry of the two isomers formed during hydroxymethylation of 2b, the minor isomer of 3b was isolated chromatographically and the solid alcohol was purified by sublimation. NOESY experiments were inconclusive and the stereochemistry of the isomers was assigned based on a comparison of computational and experimental NMR data (Fig. 2). The analysis shows that the differences in theoretical chemical shifts $\Delta \delta$ (theor) for the *anti* and *syn* isomers follows the trend in the differences in experimental chemical shifts $\Delta\delta$ (exp) between the minor and major isomers. Perhaps the most diagnostic are the bridgehead positions of the bicyclo[1.1.0]butane ring and the hydroxymethyl group, which are most affected by the structural variation in the two isomers. Thus, the bridgehead carbon atom C(3) is significantly shielded, while C(4) is deshielded in the major and syn isomers relative to the minor and anti. Also, the CH₂ protons are significantly deshielded and the ¹³C nucleus is shielded in the major and *syn* isomers relative to the minor and anti. This is consistent with general trends in exo/endo stereoisomers of bicycloalkanes.

Scheme 2.

Figure 2. Optimized gas phase geometries for **3b**-anti and **3b**-syn isomers and comparison of the difference in experimental and computed NMR chemical shifts: $\Delta \delta$ (exp) = δ (**3b**-minor) - δ (**3b**-major); $\Delta \delta$ (theor) = δ (**3b**-anti) - δ (**3b**-syn). Theoretical results obtained at the B3LYP/6-31G(d,p) level of theory.

Scheme 3.

Scheme 4.

Thus, the comparison indicates that the major isomer of **3b** has *syn* stereochemistry. This conclusion, however, is in contrast with previous reports on regioselectivity of methylation of a related carbocyclic system, where configuration of the major product was established to be *anti* based on independent synthesis.²² Perhaps the dominance of the *syn* isomer in the present case results from the complexing ability of the 1,3-dioxolane ring oxygen atoms and preferential deprotonation of the pro-*syn* position.

Propellane **1b** was generated by treatment of a mixture of stereoisomers **5b** with MeLi and used as crude Et₂O/pentane solutions without further purification. ¹H NMR of **1b** shows that the propellane CH₂ group is deshielded by about

0.6 ppm relative to that in the parent [1.1.1]propellane. For comparison, the CH_2 group in **1a** is shielded by about 0.25 ppm.

The bicyclo[1.1.0]butane **2a** was prepared from *1H*-phenalene (**6**), obtained by dehydration of 2,3-dihydro-*1H*-phenalen-1-ol²³ (**7**), following closely the literature procedure. The alcohol **7** was conveniently prepared from 2,3-dihydro-*1H*-phenalen-1-one by substituting NaBH₄ for LiAlH₄ used in the original procedure (Scheme 3).

Bicyclo[1.1.0]butane **2b** was prepared from benzvalene in two steps and 35% average overall yield (Scheme 4). Thus, **2b** was obtained by the reaction of glycol^{26,27} **8** with 2,2-dimethoxypropane in the presence of TsOH for 30 min at 0 °C. Benzoic acid in benzene used in a similar procedure²⁶ was found to be ineffective in the present case. The preparation of benzvalene followed a literature procedure²⁸ except that a larger than recommended amount of MeLi was used in the third part of the reaction. When the second portion of MeLi was stoichiometric relative to CH₂Cl₂, the yields of benzvalene established by NMR²⁹ were 36–57% and similar to those reported in the literature.²⁸

2.2. Molecular geometry and strain of 1 and 2

Structural effects on molecular geometry and strain energy of the parent [1.1.1]propellane (1c) and bicyclo[1.1.0]butane (2c) rings in 1 and 2 were assessed at the B3LYP/6-31G(d,p) level of theory and results are collected in Table 1. Analysis shows that the central C(1)–C(3) bond has virtually the same length in all three propellanes 1, while in bicyclo[1.1.0]butanes 2a and 2b is shorter by about 0.02 Å than in the parent 2c. The latter is consistent with experimental results for $2a^{30}$ and $2c.^{31}$ A comparison of the angles α indicates a modest contraction of

Table 1. Selected structural parameters and strain energies of propellanes 1 and bicyclo[1.1.0]butanes 2

	$d_{\mathrm{C1-C3}}$ (Å)	α^{a} (deg)	$\beta^{\rm b}$ (deg)	SE ^c (kcal/mol)
5				
1 \(\) 3				
41				
'				
R R				
į	1.576	118.6	124.3	94
	1.576	112.4	112.2	92.5
R = H	1.578	120.0	122.6	98
	1.596(5) ^d			98e
1 3				
42				
, , <u>-</u> 3 R				
2				
	1.471	118.0	124.6	62
	1.47(3) ^f	120(2) ^f	124(2) ^f	
D II	1.472	110.9	113.0	60
R = H	1.491	121.9	124.7	66
	$1.497(3)^{g}$	$122.7(5)^{g}$	121.6(9) ^g	64 ^e

 $^{^{}a}$ Angle between the two cyclopropane rings defined as C(2)-*-C(4), where * is the C(1)-C(3) midpoint.

^b Angle defined as R-C(2)-*, where * is the C(1)-C(3) midpoint.

^c Homodesmotic strain energies (SE) calculated according to Figure 3.

^d Electron diffraction data; Hedberg, L.; Hedberg, K. J. Am. Chem. Soc. 1985, 107, 7257–7260.

e Ref 31

f Solid state data; Ref. 30.

g Infrared data; Ref. 31.

Figure 3. Homodesmotic reactions. Strain energies are listed in Table 1.

the angle between the cyclopropyl faces in the naphthalene derivatives ${\bf 1a}$ and ${\bf 2a}$ relative to the parent systems ${\bf 1c}$ and ${\bf 2c}$. In contrast, the angle α in the dioxolane derivatives is smaller by about 7° for ${\bf 1b}$ and 11° for ${\bf 2b}$, relative to the parent hydrocarbons. Similar results are obtained for the exocyclic bond angle β , which indicates a generally larger distortion of the propellane and bicyclobutane rings in the dioxolane $({\bf b})$ than in the naphthalene $({\bf a})$ derivatives.

In spite of significant deformation of the parent rings in the ketal derivatives **1b** and **2b**, the strain energies (SE) calculated using homodesmotic reactions³² shown in Figure 3 are similar (within 6 kcal/mol) to those calculated in this work and previously reported³³ for the parent hydrocarbons.

The theoretical models for 1 and 2 provide an opportunity to analyze factors that may affect the efficiency of the double deprotonation of 2a and 2b. Previous studies concluded that a high degree of lithiation occurs for bicyclo[1.1.0]butanes carrying an sp² substituent, such as a phenyl ring, or those having a small angle between the cyclopropane faces.²¹ Thus, the ease of double deprotonation of 2a is in agreement with these empirical observations. In contrast, the low efficiency of complete deprotonation of 2b is inconsistent with the previous conclusions and the 95% of double deprotonation observed²¹ for 2,4-dimethylenebicyclo-[1.1.0]butane (tricyclo[3.1.0.0^{2,6}]hexane), a close analog of **2b**; both compounds have very similar small angle α of about 111°. Also, the computational analysis of the electronic structure of the bicyclobutanes is inconsistent with the deprotonation results. The NBO population analysis shows that the hybridization of the C(1/3) exocyclic hybrid is sp^{1.81} in **2b** which has more s-character than the analogous orbital found in 2a (sp^{1.90}). This would suggest enhanced C–H acidity of the bridgehead positions in the former and a more facile double deprotonation than in **2a**. For comparison, in the parent BCB the exocyclic orbital is sp^{1.93} hybridized. Thus, the origin of the problem with the double deprotonation of **2b** is not clear.

2.3. Reaction of propellanes 1

Initially, we investigated addition reactions to 1a. Unfortunately, no radical or photochemical addition to this propellane gave a characterizable product (Scheme 5). Thus, the photochemically-induced addition of biacety1¹¹ to 1a in cyclohexane gave only highly colored decomposition products, even when a uranium glass filter was used to limit excitation of the naphthalene ring.³⁴ The colored products presumably resulted from the light-induced rearrangement of **1a** and subsequent polymerization of the olefins.³⁵ Addition of I_2 to 1a in ether³⁶ resulted only in a black tar. Similarly, radical addition of PhSH or PhSSPh³⁶ to **1a** in ether at ambient temperature led to a brown complex mixture of unidentified products. Finally, attempts to introduce a carboxyl group at the bridgehead positions in **1a** first by lithiation either with *t*-BuLi³⁷ or lithium 4,4′-di-*t*butylbiphenyl¹³ followed by carboxylation with CO₂ was unsuccessful, and only a complex mixture of products was obtained.

Scheme 5.

In contrast, propellane **1b** underwent a smooth addition of biacetyl to form the diketone **9** in good yield (Scheme 6). The pure diketone **9** was separated from other by-products using column chromatography. The formation of polar by-products is promoted by large amounts of ether used as solvent, presumably due to light-induced radical reactions between biacetyl, ether and propellane.

Scheme 6.

3. Summary and conclusions

The preparation of both propellanes **1a** and **1b** was accomplished in about 5% overall yield starting from commercial 1-chloromethylnaphthalene (for **1a**) and cyclopentadiene (for **1b**) and using demanding seven-step procedures. Of the two propellanes, only **1b** proved useful for the formation of tetrasubstituted bicyclo[1.1.1]pentanes, and the diketone **9** was obtained in high yield from **1b**. In contrast, neither the photochemically- or thermally-induced radical additions to the central C(1)–C(3) bond in **1a**, nor a reaction with organometallic reagents led to isolable bicyclo[1.1.1]pentane derivatives.

The stereochemistry of the main isomer formed in hydroxymethylation of bicyclobutane **2b** was assigned as *syn* based on the comparison of experimental and theoretical chemical shifts for the *syn* and *anti* isomers. Simple analyses of molecular geometry and the hybridization of the C(1/3) exocyclic bond orbital in bicyclo[1.1.0]butanes **2a** and **2b** could not explain the observed marked difference in their ability to form dianions.

Thus, propellane **1b** is a promising precursor to 1,2,3,4-tetrafunctionalized bicyclo[1.1.1]pentanes. The functional group transformations of diketone **9** will be reported elsewhere.

4. Computational details

All quantum-mechanical calculations were carried out at the B3LYP/6-31G(d,p) level of theory^{38,39} using the Linda-Gaussian 98 package⁴⁰ on a Beowulf cluster of 16 processors. Geometry optimizations were undertaken using appropriate symmetry constraints and default convergence limits. The isotropic shielding factors were obtained by using the GIAO algorithm.

5. Experimental

5.1. General

Melting points are uncorrected. ¹H and ¹³C NMR spectra were obtained at 300 and 75 MHz, respectively, in CDCl₃,

unless specified otherwise. Chemical shifts were referenced to TMS (¹H) or solvent (¹³C). IR spectra were recorded for neat samples on NaCl plates. Mass spectrometry data were acquired using a GCMS instrument. FAB/HRMS spectrometry was performed at Notre Dame University, IN. Elemental Analysis was provided by Atlantic Microlabs, GA. All reactions with organometallic reagents were performed under nitrogen and strictly anhydrous conditions. In these cases the glassware used was heated in vacuo to remove all residual moisture. All workup operations with propellanes 1a and 1b were performed in an inert atmosphere.

5.1.1. Naphthotetracyclo[5.1.0.0^{1,6}.0^{2,7}]oct-3-ene (1a). To a solution of the bicyclobutane²⁴ 2a (145 mg, 0.814 mmol) in Et₂O (10 mL), n-BuLi solution in hexane (0.74 mL, 1.79 mmol, 2.44 M) was added at ambient temp and stirred for 6 h. The reaction mixture was cooled to -30 °C and chloroiodomethane (174 mg, 0.984 mmol) was added dropwise and stirred for 2 h at ambient temp. Then a 2 N aqueous NH₃ (5 mL) was added at 0 °C and stirred for 25 min. The aqueous layer was extracted with benzene $(2 \times 8 \text{ mL})$, the combined organic layers were dried (Na₂SO₄), and concentrated at reduced pressure. In case of visible precipitation, the solution can be filtered through a microfilter to remove polymeric materials. The resulting solid **1a** was about 90% pure by NMR: ¹H NMR (C₆D₆) major signals δ 1.81 (s, 2H), 3.57 (s, 2H), 6.86 (d, J=6.8 Hz, 2H), 7.06 (dd, $J_1 = 8.4$ Hz, $J_2 = 6.8$ Hz, 2H), 7.37 (d, J=8.4 Hz, 2H). The crude solid propellane was dissolved in an appropriate solvent and used in subsequent reactions.

5.1.2. 9,9-Dimethyl-8,10-dioxapentacyclo[**5.3.0.0**^{2,5} $.0^{3,5}.0^{3,6}$]**decane** (**1b**). To a solution of dihalide **5b** (231 mg, 0.83 mmol) in Et₂O/pentane (15 mL, 2:1), MeLi in Et₂O (1.6 M, 0.62 mL, 0.99 mmol) was added at -30 °C and stirred for 2 h at ambient temp. Then a 2 N aqueous NH₃ (10 mL) was added at 0 °C and stirred for 20 min. The aqueous layer was extracted with Et₂O (2×10 mL) and the combined organic layers were dried (Na₂SO₄). The resulting solution of propellane **1b** was used directly for the next transformation to form **9**: ¹H NMR (ether/pentane/CDCl₃) δ 2.64 (s, 2H), 2.66 (s, 2H), 4.64 (s, 2H), the Me groups are obscured by the solvent peaks; MS, m/z (%) 163 (1) $[M-H]^+$, 149 (100) $[M-CH_3]^+$.

5.1.3. 8,8-Dimethyl-7,9-dioxatetracyclo[4.3.0.0^{2,4}.0^{3,5}]nonane (2b). To a solution of the diol 8 (16.2 g, 145 mmol) and 2,2-dimethoxypropane (500 mL) in CHCl₃ (500 mL), p-TsOH·H₂O (350 mg, 1.84 mmol) was added at -5 to 0 °C and the mixture was stirred for 30 min at the temperature below 0 °C. The reaction mixture was diluted with CHCl₃ (500 mL), washed with NaHCO₃ (2×300 mL) and brine (300 mL), dried (Na₂SO₄) and volatiles were removed under reduced pressure. Kugelrohr distillation (bp 40-44 °C/0.4-0.5 Torr) gave 19.9 g (90% yield) of the acetonide 2b as a colorless low melting solid. For other four runs in 4–150 mmol scale the yields were 70–89%. Mp 19– 21 °C; ¹H NMR δ 1.28 (s, 3H), 1.47 (s, 3H), 2.02 (dt, J_1 = 8.4 Hz, $J_2 = 2.0$ Hz, 1H), 2.29 (br s, 2H), 2.33–2.38 (m, 1H), 4.49 (br s, 2H); 13 C NMR δ 2.9, 8.6, 25.4, 26.9, 37.6, 82.4, 114.1; MS, m/z (%) 152 (2) $[M]^+$, 137 (100); HRMS, calcd

for $C_9H_{11}O_2$: 151.0759, found 151.0763. Anal. Calcd for $C_9H_{12}O_2$: C, 71.03; H, 7.95. Found: C, 70.51: H, 7.62.

5.1.4. 8.8-Dimethyl-7.9-dioxatetracyclo[4.3.0.0^{2,4}.0^{3,5}]nonan-3-vlmethanol (3b). To a solution of the bicyclobutane **2b** (6.00 g, 39.4 mmol) in Et₂O (50 mL), *n*-BuLi solution in hexane (18.5 mL, 43.4 mmol, 2.35 M) was added at ambient temperature and stirred for 4 h. Gaseous formaldehyde, prepared by depolymerization of paraformaldehyde (6.00 g) at 170 °C, was introduced into the reaction mixture. After additional stirring for 1 h, water (25 mL) was added at ice bath cooling. The organic layer was washed with water (3 \times 10 mL) and the combined aqueous phases were extracted with ether $(2 \times 10 \text{ mL})$. The organic layer was dried (Na₂SO₄) and concentrated in vacuo. Column chromatography (Al₂O₃, Grade IV; CH₂Cl₂/MeOH 19:1 ratio containing 1% Et₃N, $R_f = 0.35$) gave 4.09 g (57% yield) of alcohol **3b** as a 2:1 mixture of regio-isomers. For other four runs in 2-50 mmol scale the yields were 40-60%. The minor isomer was isolated as a slightly less polar fraction in the chromatographic purification of the mixture.

Minor isomer (**3b**-anti): mp 60.5–62 °C; ¹H NMR δ 1.26 (s, 3H), 1.45 (s, 3H), 2.42 (br s, 1H), 2.43 (s, 2H), 4.04 (s, 2H), 4.54 (s, 2H); ¹³C NMR δ 7.0, 24.7, 25.3, 26.8, 40.7, 59.5, 82.1, 113.9; IR 3400 (br, OH), 1212 (C–O) cm⁻¹; GC/MS, rt 11.6 min, m/z (%) 182 (2) $[M]^+$, 167 (23) $[M-{\rm CH_3}]^+$, 107 (55), 95 (100). Anal. Calcd for C₁₀H₁₄O₃: C, 65.91; H 7.74. Found: C, 65.79; H, 7.79.

Major isomer (**3b**-syn) assigned from the mixture: 1 H NMR δ 1.25 (s, 3H), 1.44 (s, 3H), 2.19 (br s, 1H), 2.37 (s, 2H), 4.24 (s, 2H), 4.48 (s, 2H); 13 C NMR δ 13.5, 18.9, 25.1, 27.0, 40.6, 58.6, 82.6, 114.3; GC/MS, rt 10.9 min, m/z (%) 182 (1) $[M]^{+}$, 167 (100) $[M-\text{CH}_{3}]^{+}$, 95 (55).

5.1.5. 4-Bromo-8,8-dimethyl-7,9-dioxatetracyclo[4.3. $0.0^{2,4}.0^{3,5}$ | nonan-3-vlmethanol (4b). To a solution of the isomeric mixture of alcohols **3b** (1.79 g, 9.83 mmol) in Et₂O (10 mL), n-BuLi solution in hexane (10 mL, 23.0 mmol, 2.3 M) was added and the mixture was stirred for 5 h. Solid p-toluenesulfonyl bromide⁴¹ (2.70 g, 11.6 mmol) was added at 0 °C and the mixture was stirred for 1 h at ambient temperature. Then 10% NaOH (5 mL) was added dropwise. The aqueous layer was washed with Et₂O (3×20 mL), the combined organic layers were dried (Na₂SO₄) and concentrated in vacuo to give 2.23 g (87% yield) of 85% pure (GCMS) 4b as a yellowish oil, which was used without further purification for the next transformation. For other four runs in 1–15 mmol scale the yields were 60–82%. ¹H NMR δ (major signals) 1.26 (s, 3H), 1.44 (s, 3H), 2.67 (br s, 2H), 4.36 (br s, 2H), 4.62 (br s, 2H); MS, m/z (%) 260/262 $(10/8) [M]^+$, 187/185 (38/42), 67 (100); HRMS, calcd for C₁₀H₁₃BrO₃: 260.0048, found 260.0051.

5.1.6. 3-Bromo-4-(chloromethyl)-8,8-dimethyl-7,9-dioxatetracyclo[4.3.0.0^{2,4}.0^{3,5}]nonane (5b). A solution of crude bromo alcohol 4b (1.69 g, 6.47 mmol) and Ph₃P (3.54 g, 13.5 mmol) in CCl₄ (35 mL) was stirred for 10 h at 80 °C. EtOH (2 mL) was added and stirring was continued for additional 3 h. After cooling, Celite (\sim 5 g) was added and the mixture concentrated in vacuo. The solid residue was washed with petroleum ether containing CH₂Cl₂ (10%), the resulting

solution was concentrated and the residue sublimed to give 1.19 g (66% yield) of **5b** as a white solid. For other four runs in 1–14 mmol scale the yields were 58–67%. Mp 55–65 °C; 1 H NMR δ major/minor 1.27/1.25 (s, 3H), 1.49/1.45 (s, 3H), 2.72/2.73 (s, 2H), 4.05/4.30 (s, 2H), 4.58/4.62 (s, 2H); 13 C NMR δ major/minor 22.7/22.9, 25.5/24.9, 27.0/26.7, 29.6/25.3, 40.0/39.4, 47.2, 82.2/81.7, 115.0/114.5; MS, m/z (%) 280/278 (3/2) [M] $^{+}$, 265/263 (10/8) [M – CH₃] $^{+}$, 77 (100). Anal. Calcd for C₁₀H₁₂BrClO₂: C, 42.96; H 4.33. Found: C, 43.19; H, 4.39.

5.1.7. 2,3-Dihydro-*1H***-phenalen-1-ol.**²⁵ (7) 2,3-Dihydro-1H-phenalen-1-one⁴² (3.64 g, 20.0 mmol) was added in one portion to a solution of NaBH₄ (984 mg, 26.0 mmol) in MeOH (50 mL) at 0 °C. The reaction mixture was stirred for 24 h at ambient temperature and quenched with 5% aq HCl (5 mL) and H₂O (200 mL). The precipitate was filtered and dissolved in Et₂O (80 mL). The organic phase was washed with H₂O (10 mL), dried (Na₂SO₄) and concentrated to yield the crude product. Flash column chromatography $(SiO_2 3.5 \times 30 \text{ cm}, CH_2Cl_2, R_f = 0.35) \text{ gave } 3.17 \text{ g } (86\%)$ yield) of alcohol 7 as an off-white light-sensitive solid: mp 81–83 °C (lit. 25 85–86 °C); ¹H NMR δ 1.89 (br s, 1H), 2.09– 2.26 (m, 2H), 3.07 (dt, $J_1 = 16.4$ Hz, $J_2 = 5.9$ Hz, 1H), 3.31 (ddd, $J_1 = 16.4 \text{ Hz}$, $J_2 = 8.2 \text{ Hz}$, $J_3 = 5.4 \text{ Hz}$, 1H), 7.29 (dd, $J_1 = 6.8 \text{ Hz}, J_2 = 0.7 \text{ Hz}, 1\text{H}, 7.39 \text{ (dd}, J_1 = 7.7 \text{ Hz}, J_2 =$ 6.8 Hz, 1H), 7.45 (dd, $J_1 = 7.7$ Hz, $J_2 = 7.1$ Hz, 1H), 7.54 (d, J=7.1 Hz, 1H), 7.69 (d, J=7.7 Hz, 1H), 7.78 (d, J=7.1 Hz, $J_2 = 0.9$ Hz, 1H).

5.1.8. 3,5-Diacetyl-9,9-dimethyl-8,10-dioxatetracyclo- $[5.3.0.0^{2,5}.0^{3,6}]$ decane (9). Freshly distilled 2,3-butanedione (2 mL) was added to a solution of propellane 1b in Et₂O/ pentane prepared from 231 mg (0.83 mmol) of dihalide **5b**. The mixture was stirred at about 5 °C and irradiated with a 450 W medium-pressure Hanovia mercury lamp for 5 h. Volatiles were removed and the residue was short-path distilled (110 °C/0.01 Torr) giving 175 mg (85% based on **5b**) of hygroscopic diketone **9**. Alternatively, diketone was purified by column chromatography (neutral Alumina, Grade 1, hexane/CH₂Cl₂ 9:1). For other three runs in 0.5–3 mmol scale the yields were 50–68% based on **5b**. ¹H NMR δ 1.28 (s, 6H), 2.08 (s, 3H), 2.21 (s, 3H), 2.42 (s, 2H), 3.33 (t, J=0.8 Hz, 2H), 4.85 (t, J=0.8 Hz, 2H); ¹³C NMR δ 24.1, 24.3, 27.0, 27.4, 43.1, 47.7, 55.2, 65.0, 81.1, 114.7, 204.4; MS, m/z (%) 235 (100) $[M-CH_3]^+$; HRMS, calcd for $C_{14}H_{19}O_4$: 251.1283, found 251.1286.

Acknowledgements

Financial support for this work was received from the Petroleum Research Fund (37174-AC1).

References and notes

- Levin, M. D.; Kaszynski, P.; Michl, J. Chem. Rev. 2000, 100, 169–234.
- Kaszynski, P.; Friedli, A. C.; Michl, J. J. Am. Chem. Soc. 1992, 114, 601–620.
- 3. Merkle, R. C. Nanotechnology 2000, 11, 89-99.

- Schwab, P. F. H.; Levin, M. D.; Michl, J. Chem. Rev. 1999, 99, 1863–1933.
- 5. Robinson, R. E.; Michl, J. J. Org. Chem. 1989, 54, 2051–2053.
- Shtarev, A. B.; Pinkhassik, E.; Levin, M. D.; Stibor, I.; Michl, J. J. Am. Chem. Soc. 2001, 123, 3484–3492.
- Levin, M. D.; Hamrock, S. J.; Kaszynski, P.; Shtarev, A. B.; Levina, G. A.; Noll, B. C.; Newmark, R.; Moore, G. G. I.; Michl, J. J. Am. Chem. Soc. 1997, 119, 12750–12761.
- 8. 2,2-Dichlorobicyclo[1.1.1]pentane-1,3-dicarboxylic acid was also prepared through addition of CCl₂ to the appropriate bicyclo[1.1.0]butane; Applequist, D. E.; Wheeler, J. W. *Tetrahedron Lett.* **1977**, 3411–3412.
- 9. Hamrock, S. J.; Michl, J. J. Org. Chem. 1992, 57, 5027-5031.
- 10. Michl, J.; Mazal, C. Personal communication.
- 11. Kaszynski, P.; Michl, J. J. Org. Chem. 1988, 53, 4593-4594.
- Kaszynski, P.; McMurdie, N. D.; Michl, J. J. Org. Chem. 1991, 56, 307–316.
- 13. Bunz, U.; Szeimies, G. Tetrahedron Lett. 1990, 31, 651-652.
- Schwab, P. F. H.; Noll, B. C.; Michl, J. J. Org. Chem. 2002, 67, 5476–5485.
- Kaszynski, P.; Michl, J. In Rappoport, Z., Ed.; The Chemistry of the Cyclopropyl Group; Wiley: New York, 1995; Vol. 2, pp 773–812.
- 16. Belzner, J.; Gareiß, B.; Polborn, K.; Schmid, W.; Semmler, K.; Szeimies, G. *Chem. Ber.* **1989**, *122*, 1509–1529.
- Werner, M.; Stephenson, D. S.; Szeimies, G. *Liebigs Ann.* 1996, 1705–1715.
- Kenndoff, M.; Singer, A.; Szeimies, G. J. Prakt. Chem. 1997, 339, 217–232.
- 19. Klopsch, R.; Schlüter, A.-D. *Tetrahedron* **1995**, *51*, 10491–10496.
- Kottirsch, G.; Polborn, K.; Szeimies, G. J. Am. Chem. Soc. 1988, 110, 5588–5590.
- Schlüter, A.-D.; Huber, H.; Szeimies, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 404–405.
- Paquette, L. A.; Taylor, R. T. J. Am. Chem. Soc. 1977, 99, 5708–5715.
- 23. Hempenius, M. A.; Lugtenburg, J.; Cornelisse, J. *Recl. Trav. Chim. Pays-Bas* **1990**, *109*, 403–409.
- Watson, C. R., Jr.; Pagni, R. M.; Dodd, J. R.; Bloor, J. E. J. Am. Chem. Soc. 1976, 98, 2551–2562.
- 25. Boekelheide, V.; Larrabee, C. E. J. Am. Chem. Soc. 1950, 72, 1245–1249.
- Christl, M.; Leiniger, H.; Kemmer, P. Chem. Ber. 1984, 117, 2963–2987.

- 27. Following footnote 10b in Bentley, T. W.; Norman, S. J.; Gerstner, E.; Kemmer, R.; Christl, M. *Chem. Ber.* **1993**, *126*, 1749–1757 is essential for achieving good yields.
- Katz, T. J.; Roth, R. J.; Acton, N.; Carnahan, E. J. J. Org. Chem. 1999, 93, 7663–7664.
- Miller, D. L.; Gross, M. L. J. Am. Chem. Soc. 1983, 105, 4239–4243.
- 30. Hazell, A. C. Acta Cryst. 1977, B33, 272-274.
- Wiberg, K. B.; Waddell, S. T. J. Am. Chem. Soc. 1990, 112, 2184–2194.
- 32. George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. *Tetrahedron* **1976**, *32*, 317–323.
- 33. Wiberg, K. B. Angew. Chem., Int. Ed. Engl. 1986, 25, 312–322.
- Spanget-Larsen, J.; Gubernator, K.; Gleiter, R.; Thulstrup, E. W.; Bianco, B.; Gandillion, G.; Burger, U. Helv. Chim. Acta 1983, 66, 676–686.
- 35. Turro, N. J.; Ramamurthy, V.; Pagni, R. M.; Butcher, J. A., Jr. *J. Org. Chem.* **1977**, *42*, 92–96.
- Wiberg, K. B.; Waddell, S. T. J. Am. Chem. Soc. 1990, 112, 2194–2216.
- 37. Schlüter, A.-D. Macromolecules 1988, 21, 1208-1211.
- 38. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
- 39. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
- 40. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh, PA, 1998.
- 41. Poshkus, A. C.; Herweh, J. E.; Magnotta, F. A. *J. Org. Chem.* **1963**, 28, 2766–2769.
- 42. Fieser, L. F.; Gates, M. D., Jr. J. Am. Chem. Soc. 1940, 62, 2335–2341.